
Exabeam

650.209.8599

1051 E. Hillsdale Blvd, 4th Floor
Foster City, CA 94404

Have feedback on this guide? We'd love to hear from you!
Email us at docs@exabeam.com

Disclaimer: Ensure that you are viewing the most up-to-date version
of this guide by visiting the Exabeam Documentation Portal.

Action Editor Documentation

July 17, 2024

Copyright

All content in this document, including text, graphics, logos, icons, images, and video clips, is the
exclusive property of Exabeam or its content suppliers and is protected by U.S. and international
copyright laws. The compilation (meaning the collection, arrangement, and assembly) of all content
in this document is the exclusive property of Exabeam and is also protected by U.S. and international
copyright laws. The content in this document may be used as a resource. Any other use, including the
reproduction, modification, distribution, transmission, republication, display, or performance, of the
content in this document is strictly prohibited.

Copyright ©2024 Exabeam, Inc. All Rights Reserved.

Trademarks

Exabeam, the Exabeam logo, Threat Hunter, Smarter SIEM, Smart Timelines and Security Management
Platform are service marks, trademarks or registered marks of Exabeam, Inc. in the United States
and other countries. All other brand names, product names, or trademarks belong to their respective
owners. The marks and logos displayed in this document may not be used without the prior written
consent of Exabeam or their respective owners.

Patents

Exabeam owns, and reserves all rights for, patents for Exabeam products and services, which may be
protected under registered patents as well as patents pending.

Other Policies

For information regarding how Exabeam treats personally identifiable information, please review the
Exabeam privacy policy at www.exabeam.com/privacy.

Feedback

Have feedback on this guide? We'd love to hear from you! Email us at docs@exabeam.com.

Disclaimer: Please ensure you are viewing the most up-to-date version of this guide by visiting the
Exabeam Documentation Portal.

https://www.exabeam.com/privacy
mailto:docs@exabeam.com?subject=Feedback_on_Exabeam_Documentation
https://docs.exabeam.com/

Table of Contents
Action Editor .. 4
Customize an Out-of-the-Box Service Using Action Editor .. 5
Create a Custom Service Using Action Editor .. 6
Edit a Custom Service in Action Editor .. 7
Delete a Custom Service in Action Editor ... 8
Edit a Custom Service Configuration Document .. 9

Edit a Configuration Document in the Service .. 9
Edit connector.py .. 9
Edit __init__.py ... 10
Add Dependencies to requirements.txt ... 10

Create a Custom Action Using Action Editor ... 11
1. Add Basic Information about the Action ... 11
2. (Optional) Configure Action Inputs .. 11
3. Configure Action Outputs .. 12
4. Customize the Workbench Output ... 12

Select the Workbench Output Type ... 12
Configure a Table Workbench Output ... 13
Configure a Map Workbench Output ... 13

5. Edit the Action Module ... 13
Send Data to a Table Workbench Output ... 14
Send Data to a Map Workbench Output .. 15
Create Error Messages and Exceptions ... 15

6. Edit the Service Configuration Documents .. 15
7. Download and Upload Your Service to Incident Responder 16

Edit a Custom Action in Action Editor .. 17
Delete a Custom Action in Action Editor .. 18

Action Editor Documentation 3

Action Editor

Create your own Incident Responder service and actions using Action Editor on Exabeam SOC
Platform.

Action Editor is an application available for free on Exabeam SOC Platform to all Incident
Responder users. It guides you through the process to customize an out-of-the-box service and
actions or create your own custom service and actions from scratch.

You might consider creating a custom service or action if you can't build a specific workflow in a
Incident Responder playbook using just out-of-the-box actions. For example, when you create a
playbook, you can use an output of one node as an input for another node only if it takes in data
of the same type. With Action Editor, you can change an action's inputs and outputs, or add more
inputs and outputs, to ensure playbook nodes map together. You can also add more actions to an
out-of-the-box service; create a service Incident Responder doesn't currently support so you get
started quickly without waiting for Exabeam to develop it; or build other services and actions to fit
your team's specific needs.

After you create a service or action in Action Editor, download a ZIP file, then upload it to Incident
Responder. Your custom service and action is available for you to run manually or use to create
your perfect playbook. To upload a service you created in Action Editor, you must have Incident
Responder i53 or later.

Action Editor

Action Editor Documentation 4

Customize an Out-of-the-Box Service Using Action Editor

If an out-of-the-box service doesn't do what you need it to, clone the service so you can tweak
and tailor it to your needs, without creating a service from scratch. You can only clone a service
once.

Consider customizing an out-of-the-box service to modify an action's input or output fields to
better suit your needs or add more actions to an existing service.

1. Select the service. To search for a specific service, enter the service name in the search bar.

2. Click clone .

3. Click Clone. Another service of the same name appears with a Custom label. All related
configuration documents and actions are also cloned.
When you upload this service to Incident Responder, all related actions and playbooks will
start using this custom service instead of the out-of-the-box service. To upload the service,
you must have version i53 or above.

Customize an Out-of-the-Box Service Using Action Editor

Action Editor Documentation 5

https://docs.exabeam.com/en/cloud-delivered-incident-responder/all/docs/configure-incident-responder-settings/upload-a-custom-service.html

Create a Custom Service Using Action Editor

To quickly get started with a service Incident Responder doesn't currently support or to build a
unique service specific to your needs, create your own service from scratch.

1. Click + Add a Service.

2. Enter basic information about the service:
• Service name – Enter a name that helps you quickly and easily identify the service; for

example, Microsoft Outlook. It appears when you configure an action node in a playbook
and select a service.

• Product name – Enter the product name; for example, Office 365. It appears in the service
settings.

• Description – Describe the service, what it does, and what it's used for.

3. A connection parameter field defines information you enter to connect to the service; for
example, username, password, domain, or TCP port. These fields appear when you add a
service in Incident Responder service settings. To create a connection parameter field, click
+ Add a field, then enter information about the field:
• Name – Enter a name for the field.

• Display name – Enter the name for the field that is displayed in Incident Responder.

• Description – Describe the field.

• Data type – Select URL, string, password, long, boolean, large text, or picklist.

If you select picklist, add the possible list values you select from: click edit , click +Add
picklist option, type the name of the list value, then press the enter or return key.

If the field is required, select the Required checkbox.

4. Click Save.
Action Editor automatically creates three empty documents for the service: __init__.py,
connector.py, and requirements.txt. Populate them directly in the service or when
you create a custom action.

Create a Custom Service Using Action Editor

Action Editor Documentation 6

Edit a Custom Service in Action Editor

Rename the service or product, change the service description, or edit the configuration fields.

1. Select the service, then click edit .

2. Change the Service Name, Product Name, Description, or Configuration Fields.
If you cloned an out-of-the-box service, you can't edit the Product Name or Version
because it's cloned from the original out-of-the-box service.

3. Click Save.

4. To download the service, select the download icon, then download the ZIP file.

5. In Incident Responder, upload the service. You must have version i53 or later.

Edit a Custom Service in Action Editor

Action Editor Documentation 7

https://docs.exabeam.com/en/cloud-delivered-incident-responder/all/docs/configure-incident-responder-settings/upload-a-custom-service.html

Delete a Custom Service in Action Editor

Delete a custom service you created.

1. Select the service.

2. Click the trash .

3. Click Delete. If you don't want to use this service in Incident Responder, ensure that you also
delete it there.

Delete a Custom Service in Action Editor

Action Editor Documentation 8

https://docs.exabeam.com/en/cloud-delivered-incident-responder/all/docs/configure-incident-responder-settings/delete-a-custom-service.html

Edit a Custom Service Configuration Document

To build the logic behind a custom service and how a custom action communicates with it, edit
the __init__.py, connector.py, and requirements.txt files.

Each custom service has three configuration documents: __init__.py, connector.py, and
requirements.txt. These documents determine how all actions for a service communicate
with it and are required for Incident Responder to process and upload the service.

When you first create a custom service, the documents are empty. You can populate a document
in two ways: directly in the service itself, and when you create or edit a custom action.

Edit a Configuration Document in the Service

1. Select a custom service.

2. Under Documents, select a document: __init__.py, connector.py, or
requirements.txt.

3. Make changes to the document.

4. Click SAVE.

Edit connector.py
Build the logic the action uses to communicate — send and receive all requests — to the service.

The connector must:

• Define a class named after the service.

• Define the __init__ method for this class so it assigns values to the service's configuration
fields.
For example, if you created service configuration fields for username and password, the
__init__ method takes username and password as parameters and assigns them to objects:

def __init__(self, username: str=None, password: str=None) -> None:
 self.username = username
 self.password = password

• Define the test_connection method so if the configuration fields are valid, it returns True; if
the configuration fields are invalid, it returns False or an exception.
For example, if you created configuration fields for username and password:

def authorize(self) -> bool:
 if not self._username or not self._password:
 return True

 res = self._session.post("auth/login", json={"username": self._username,
"password": self._password})
 if not res.ok:
 raise ExabeamConnectorException("Invalid credentials")

Edit a Custom Service Configuration Document

Action Editor Documentation 9

def test_connection(self) -> bool:
 return self.authorize()

Add any other logic necessary for actions to communicate to the service.

Edit __init__.py
Import all actions classes, the connector, and the test connection method, so it's contained in one
location.

• Each time you create a new action for a service, you must update __init__.py so it imports
the action class:

from .modulename import actionclass

For example:

from .get_reputation import GetFileReputation, GetIPReputation,
GetURLReputation

You must import all action classes. If you don't import it, you can't use it in Incident Responder .

• The connector contains methods for all actions and makes all API calls. Import the connector
class under the alias, Connector:

from .connector import yourservice as Connector

• To call test_connection, a method in the connector class used to test the service, import
the TestServiceConnection class under an alias. The alias should be TestService followed
by the service name, without spaces:

from soar.library.common.test_connection import TestServiceConnection as
TestServiceYourService

For example:

from soar.library.common.test_connection import TestServiceConnection as
TestServiceCode42

If your service does not support connection testing, import the
TestServiceConnectionNotSupported class instead of TestServiceConnection from
the same package, under the same alias:

from soar.library.common.test_connection import
TestServiceConnectionNotSupported as TestServiceCode42

Add Dependencies to requirements.txt
In requirements.txt, list all external dependencies and libraries you must install to use
connector.py and __init__.py.

Edit a Custom Service Configuration Document

Action Editor Documentation 10

Create a Custom Action Using Action Editor

After you create a custom service from scratch or clone an out-of-the-box service, create a
custom action.

1. Add Basic Information about the Action
Name and describe the action to help you identify it when you configure an action node and
manually run an action. The action name also appears in the service settings under service details.

Selecting an action type automatically populates the description and inputs for the service. If you
don't find an action type that best describes your custom action, create a new action type.

1. Select a custom service, then next to Actions, click .

2. Enter basic information about the action:
• Action name – Enter a name for the action. This appears when you select a service to
configure a playbook action node.
Since the action name is used throughout the action's back end, you must carefully choose
the action name and review it before you continue. If you return to this step to rename the
action, you lose all your work and must reconfigure the action from scratch.

• Action type – An action type defines an action's basic metadata, inputs, and outputs. To
automatically populate the action's description, inputs, and outputs, select an action type
that best describes your action from the list.
If you don't see an action type that describes your action, create your own action type. In
the Select action type field, start typing, then click Add [action type]. If you create your
own action type, you must enter a description and define all inputs and outputs.

• Description – Describe the action, what it does, and what it's used for. This description
appears when you manually run an action in the workbench.

3. Review the action name, then click Next.

2. (Optional) Configure Action Inputs
An input is a parameter passed to the action and used to produce an output. You enter a value for
the input when you manually run an action or configure a playbook action node.

You don't have to configure inputs if the action can get the information it needs from within the
service host, using the information you provided when you configured the service. For example,
the out-of-the-box List Context Tables action doesn't require any inputs because the Advanced
Analytics API can retrieve a list of context tables without you providing additional information.

1. Click + Add an Input.

2. Fill in information about the input:
• Name – Enter a name for the input. You refer to this name in Python code you write later.

• Display name – Enter a name that appears when you configure an Incident Responder
playbook action node and select an input.

Create a Custom Action Using Action Editor

Action Editor Documentation 11

• (Optional) Description – Describe the input.

• Data type – Select the intended data type of the input value: URL, String, Password, Long,
Boolean, Large_text, Hash, Picklist, File Artifacts, or File Entity.

3. If you can enter or select multiple input values, select the ALLOW MULTIPLE checkbox. If you
can only enter or select one input value, don't select the checkbox.

4. If you must configure this input to run the action, select the REQUIRED checkbox. If you don't
need to configure this input to run the action, don't select the checkbox.

5. If you can type in text as an input value, select the ALLOW USER INPUT checkbox. If you can
only select a pre-defined input value, don't select the checkbox.

3. Configure Action Outputs
An output is a parameter that the action returns after it processes and uses the input parameter.

In a playbook, the output of an action node is used as an input for the next node. The final output
of a playbook, and the output for an action you manually run, appear in an incident's workbench.

1. Click + Add an Output.

2. Fill in information about the output:
• Name – Enter a name for the output. You refer to this name in Python code you write later.

• Display name – Enter a name that appears when you configure an Incident Responder
playbook action node and use the output of the previous node as the input.

• (Optional) Description – Describe the output.

• Data type – Select the intended data type of the output value: URL, String, Password,
Long, Boolean, Large_text, Hash, Number, or Timestamp.

• Data path – After you execute the action, the output is stored in a JSON file. Enter the file
path for the JSON file. This file path is passed to the next playbook node as an input.

3. If the action can output a list of multiple values, select the ALLOW MULTIPLE checkbox.

4. Click Next.

4. Customize the Workbench Output
After you manually run an action or playbook, the outputs appear in an incident's workbench.
Configure how the outputs of your custom action appear in the workbench.

Select the Workbench Output Type
Select the type of output that appears in the workbench after you run an action.

• If you don't want any output to appear in the workbench, select No Card, then click Next.

• To list action outputs in a table, select Table.

• To display action outputs on a world map, select Map. For example, the out-of-the-box
Geolocate IP action produces a map-type workbench output.

Create a Custom Action Using Action Editor

Action Editor Documentation 12

Configure a Table Workbench Output

1. Under Header Title, enter a title for the output header.

2. Under Header Color, select a color for the output header. To select from a color picker or
enter a RGBA value, click the color swatch. To enter a hex code, start typing after #.

3. Under Empty Result Message, enter a helpful message that displays in Incident Responder
when the action can't get any data.

4. Configure table columns:
• Column label – Enter a header name for the column.

• Data type – Select String. Indicates the expected data type for the values in the column.

• Column width – In the text field, enter a number in pixels (px) or as a percent (%). From
the list, select the corresponding unit. If you create multiple columns, it's easiest to use the
same units across all columns. If you enter a number in percent, ensure the numbers across
all columns sum to 100 percent.

To add another column, click + Add a Column.

5. Click Next.

Configure a Map Workbench Output

1. (Optional) Under Header Title, enter a title for the output header.

2. Under Header Color, select the color of the output header. To select from a color picker or
enter a RGBA value, click the color swatch. To enter a hex code, start typing after #.

3. (Optional) Under Empty Result Message, enter a helpful message that displays in Incident
Responder when the action can't get any data.

4. Click Next.

5. Edit the Action Module
Under ACTION RELATED FILES, in the module for the action, build all logic necessary for it to
function, including how inputs are computed into outputs, what error messages are shown, and
how action outputs are displayed in the workbench.

In any action module, you must:

• Import the SoarAction parent class:

from soar.library.common.soar_action import SoarAction

• Define a class that inherits from the SoarAction parent class, and name it after the action:

class youraction(SoarAction):

For example:

class GetGeolocationIpApi(SoarAction):

Create a Custom Action Using Action Editor

Action Editor Documentation 13

Ensure that you import this action class into __init__.py.

• Underneath the action class, create a method named action:

def action(self) -> bool:

Underneath this method, insert all action-related logic. When you run an action in Incident
Responder , it starts reading from this point.

To set an action input:

actioninput = self.get_input_value_with_default('actioninput',
'defaultinputvalue
')

If the action can't set the input, it returns the default input value. This parameter is optional.

• If you don't set a default input value, it returns None. For example:

ips = self.get_input_value_with_default('ips')

• If you set a default input value, it returns that value. For example:

ips = self.get_input_value_with_default('ips','8.8.8.8')

If the action can't set the input, it returns 8.8.8.8.

To set an action output and save it so it can be passed along and used as inputs in playbook
nodes:

self.set_result({'actionoutput':'outputvalue'})

Send Data to a Table Workbench Output
If you previously configured a table workbench output, specify the exact data that appears in the
output.

To add a row to the table:

self.builder.add_row(datakey, [columnvalues])

For example:

self.builder.add_row(now, [host, status])

To indicate that there's no more data to add and display the workbench output:

self.add_display(self.builder.build())

Display the Empty Result Message in Incident Responder when the action can't get any data:

self-builder.add_empty_data(now)

Create a Custom Action Using Action Editor

Action Editor Documentation 14

If you didn't set an Empty Result Message, the workbench output displays Action ran
successfully but returned no results.

Send Data to a Map Workbench Output
If you previously configured a map workbench output, specify the exact data that appears in the
workbench output.

To set coordinates for and display an exact point on the map:

.set_coord(youroutputvalue, lat=latitude, lng=longitude,
markerContent=youroutputvalue)

markerContent is an optional parameter that uses a marker to identify a location on the map.

To indicate that there's no more data to add and display the workbench output:

self.add_display(self.builder.build())

Display the Empty Result Message in Incident Responder when the action can't get any data:

self.builder.add_empty_data(now)

If you didn't set an Empty Result Message, the workbench output displays Action ran
successfully but returned no results.

Create Error Messages and Exceptions
If something goes wrong, it's helpful to provide error messages, exceptions, and other information
about what happened so you can identify and debug the problem.

To import an Exabeam exception:

from soar.utility.custom_exceptions import ExabeamConnectorException

When you import the SoarAction class, you also import a logging package. Use it to print error
messages or exceptions to a console or write them to a file:

self.logger.logginglevel('yourmessage')

For example:

self.logger.debug("No IP address found in input")

6. Edit the Service Configuration Documents
Under GENERAL FILES, make the necessary changes to connector.py, __init__.py, and
requirements.txt. These documents determine how all actions for a service communicate
with it and are required for Incident Responder to process and upload the service.

Ensure that you update __init__.py so it imports the action class you created in the action
module:

from .modulename import actionclass

Create a Custom Action Using Action Editor

Action Editor Documentation 15

For example:

from .get_reputation import GetFileReputation, GetIPReputation, GetURLReputation

You must import all action classes. If you don't import it, you can't use it in Incident Responder .

7. Download and Upload Your Service to Incident Responder
After you create all custom actions and you're ready to use your custom service, download and
upload it to Incident Responder .

1. In your custom service, click the download icon. The service downloads as a ZIP file.

2. In Incident Responder, upload the service. You must have version i53 or later.

Create a Custom Action Using Action Editor

Action Editor Documentation 16

https://docs.exabeam.com/en/cloud-delivered-incident-responder/all/docs/configure-incident-responder-settings/upload-a-custom-service.html

Edit a Custom Action in Action Editor

Rename, change inputs and outputs, customize the workbench, or modify any configuration files
for a custom action you created.

1. Select the custom service, hover over the custom action, then click the More menu.

2. Select Edit Action.

3. Edit the action name, type, or description; change inputs or outputs; customize the
workbench; or modify the action module or service configuration documents.
Since the action name is used throughout the action's back end, if you edit the action name,
you lose everything you previously configured and must reconfigure the action from scratch.
You must also update the action class __init__.py refers to.

4. Click Finish.

5. To download the service, select the download icon, then download the ZIP file.

6. In Incident Responder, upload the service. You must have version i53 or later.

Edit a Custom Action in Action Editor

Action Editor Documentation 17

https://docs.exabeam.com/en/cloud-delivered-incident-responder/all/docs/configure-incident-responder-settings/upload-a-custom-service.html

Delete a Custom Action in Action Editor

Delete a custom action you created in Action Editor, then re-upload the package to Incident
Responder

1. Select the custom service, hover over the custom action, then select the More menu.

2. Select Delete Action, then click Delete.

3. To download the service, select the download icon, then download the ZIP file.

4. In Incident Responder, upload the service. You must have version i53 or later.

Delete a Custom Action in Action Editor

Action Editor Documentation 18

https://docs.exabeam.com/en/cloud-delivered-incident-responder/all/docs/configure-incident-responder-settings/upload-a-custom-service.html

	Action Editor Documentation
	Table of Contents
	Action Editor
	Customize an Out-of-the-Box Service Using Action Editor
	Create a Custom Service Using Action Editor
	Edit a Custom Service in Action Editor
	Delete a Custom Service in Action Editor
	Edit a Custom Service Configuration Document
	Edit a Configuration Document in the Service
	Edit connector.py
	Edit __init__.py
	Add Dependencies to requirements.txt

	Create a Custom Action Using Action Editor
	1. Add Basic Information about the Action
	2. (Optional) Configure Action Inputs
	3. Configure Action Outputs
	4. Customize the Workbench Output
	Select the Workbench Output Type
	Configure a Table Workbench Output
	Configure a Map Workbench Output

	5. Edit the Action Module
	Send Data to a Table Workbench Output
	Send Data to a Map Workbench Output
	Create Error Messages and Exceptions

	6. Edit the Service Configuration Documents
	7. Download and Upload Your Service to Incident Responder

	Edit a Custom Action in Action Editor
	Delete a Custom Action in Action Editor

